Airborne Light Detection and Ranging (LiDAR) for Individual Tree Stem Location, Height, and Biomass Measurements
نویسندگان
چکیده
Light Detection and Ranging (LiDAR) remote sensing has demonstrated potential in measuring forest biomass. We assessed the ability of LiDAR to accurately estimate forest total above ground biomass (TAGB) on an individual stem basis in a conifer forest in the US Pacific Northwest region using three different computer software programs and compared results to field measurements. Software programs included FUSION, TreeVaW, and watershed segmentation. To assess the accuracy of LiDAR TAGB estimation, stem counts and heights were analyzed. Differences between actual tree locations and LiDAR-derived tree locations using FUSION, TreeVaW, and watershed segmentation were 2.05 m (SD 1.67), 2.19 m (SD 1.83), and 2.31 m (SD 1.94), respectively, in forested plots. Tree height differences from field measured heights for FUSION, TreeVaW, and watershed segmentation were −0.09 m (SD 2.43), 0.28 m (SD 1.86), and 0.22 m (2.45) in forested plots; and 0.56 m (SD 1.07 m), 0.28 m (SD 1.69 m), and 1.17 m (SD 0.68 m), respectively, in a plot containing young conifers. The TAGB comparisons included feature totals per plot, mean biomass per feature by plot, and total biomass by plot for each extraction method. Overall, LiDAR TAGB estimations resulted in FUSION and TreeVaW underestimating by 25 and 31% respectively, and watershed segmentation overestimating by approximately 10%. LiDAR TAGB underestimation occurred in 66% and overestimation occurred in 34% of the plot comparisons.
منابع مشابه
Estimating biomass of individual pine trees using airborne lidar
Airborne lidar (Light Detection And Ranging) is a proven technology that can be used to accurately assess aboveground forest biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings typical for loblolly pine stands (Pinus taeda L.) in the sou...
متن کاملSub-Compartment Variation in Tree Height, Stem Diameter and Stocking in a Pinus radiata D. Don Plantation Examined Using Airborne LiDAR Data
Better information regarding the spatial variability of height, Diameter at Breast Height (DBH) and stocking could improve inventory estimates at the operational Planning Unit since these parameters are used extensively in allometric equations, including stem volume, biomass and carbon calculations. In this study, the influence of stand stocking on height and DBH of two even aged radiata pine (...
متن کاملLiDAR Waveform-based Woody and Foliar Biomass Estimation in Savanna Environments
Assessment and management of ecosystem biomass accumulation typically involves extensive field data collection, which includes parameters such as foliar area, stem diameter, woody biomass measurement, etc. The acquisition of these data can be expensive and time consuming, while leaving the user with relatively crude values for modeling intricate dependent variables, e.g., woody and foliar bioma...
متن کاملCanopy Extraction Using Airborne Laser Scanning Data in Forestry Areas
To understand the biomass condition in the forestry areas, the detection for individual trees becomes an important topic. For forestry management, the canopy may be described with several parameters, e.g., number of stems, stand position, tree height, timber volume, canopy cover, etc. Traditional methods rely on field measurements, imagery, and radar data to derive the canopy information. Follo...
متن کاملEfficiency of Individual Tree Detection Approaches Based on Light-Weight and Low-Cost UAS Imagery in Australian Savannas
The reliability of airborne light detection and ranging (LiDAR) for delineating individual trees and estimating aboveground biomass (AGB) has been proven in a diverse range of ecosystems, but can be difficult and costly to commission. Point clouds derived from structure from motion (SfM) matching techniques obtained from unmanned aerial systems (UAS) could be a feasible low-cost alternative to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 3 شماره
صفحات -
تاریخ انتشار 2011